BROWNIAN DIFFUSION IN NONEQUILIBRIUM GAS

0. A, Grechannyi UDC 533.723

The Brownian motion in a nonequilibrium gas is considered within the framework of the sto-
chastic transfer theory in linear Boltzmann systems. The equation for Brownian diffusion
of particles is derived in inhomogeneous flows of rarefied gas.

Some general approaches for investigating Brownian motion of particles in a nonequilibrium thermo-
static regulator were developed in [1-4]. When analyzing the motion of a mirror-reflecting sphere in gas
Brownian diffusion was studied in [4] in an inhomogeneous flow of rarefied gas which is based on a modi-
fied Markov method. However, in the case of gas thermostatic regulator it would be more to the point to
investigate Brownian diffusion in the framework of kinetic theory. Such analysis was carried out in [5]
for the gas equilibrium case. :

In the present article Brownian motion of particles in a nonequilibrium gaseous medium is again
considered on the basis of kinetic theory. The results of the analysis are identical in corresponding situ-
ations with the results given in [4]; consequently, they provide a kinetic basis for the method as given in
[4]. The obtained expressions for the tensor of diffusion and of dynamic friction enable one to write down
the Langevin equations for Brownian motion in an inhomogeneous anisotropic medium; by employing these
expressions the equation of Brownian diffusion can be obtained which takes into account the effect of the
inertia of a particle on its motion in the coordinate space. To give an example the stress-bearing effect
is studied on the stationary particle distribution in Poiseuille flow and in the gravitational field. It resulfs
in an inhomogeneous particle distribution of a flow section and an additional pulling down in the direction
of the gravitational forces. ' » ’

1. The motion is considered of a system of particles of mass m and mean density n in an inhomog-
eneous gaseous medium with density ny and molecule mass my. Under the assumption that ny > n, the
interaction between the particles can be ignored if one compares it with their interaction with gas mole-
cules. It is also assumed by us that the distribution function of the molecules is independent of the state
of particle m since the change in f due to interaction between the molecules of the medium and the par-
ticles is proportional to n. These approximations (in the case of interaction between the particles and gas
molecules due to collision) are equivalent to an assumption that the evolution of the distribution function
T of particles m has a Markovian character and enables one to analyze this evolution using stochastic
theory of transport phenomena in linear Boltzmann systems of Tolubinskii [6] in which the particle velocity
is approximated by a Markov jump-like process.

In describing the interaction between the particles m and the gas molecules we shall only consider
the potential of rigid spheres. The same characteristics of a Markov jump-like process, namely the col-
lision frequency v and the probability density of transfer in a unit of time W are given in this case by
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The above reflects the laws of conservation of energy and of momentum in collisions and the following
notation isused: vg = (mv + myvy/(m + my), g = v—v, = eg. The equation for F is given by [6]
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which can be regarded as generalized Fokker—Planck equations for the case of particle motion in non-
equilibrium gaseous medium for any value of the ratio € = my/m.

2. Brownian motion occurs if e « 1. It 1s considered by us on the bas1s of (3). Since the change of
the particle velocity when colliding is given by AV = [e/(1 + s)](g +e g) —sAvo, therefore by setting Av,
~ 1, one obtains Av ~ &. The integral of Fokker—Planck collisions follows from the Boltzmann collision
integral in (3) if F(t, T, v') is expanded into a series of AV and the first two nonvanishing terms are re~
tained:
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and hence by using (2)
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From the physicist's point of view it is interesting to study the approximation of the state o of a
Brownian particle in equilibrium to the state of the surrounding gaseous medium when isl = lv=u(@l
[skT(r)]i/ ’(the particle energy in the external field Eis assumed to be small compared with the average
thermal energy). By assuming that in this stage one has iel = Ivo—u(r)l ~ 1, one obtains that [s| ~ el/?,
Therefore, if the coefficients of A and Dv in (4) are calculated with an accuracy up to the terms of the
order &%/2 or €%, respectively, then (4) takes into account the terms of the order of ¢ in the correct expan-

sion of the Boltzmann collision integral in the unique series in powers of &.

3. The calculation of the pulling down and diffusion coefficients in (4) is easily carried out in the
variables ¢ and 8. For a nonequilibrium distribution function of gas molecules its thirteen-moments ap-
proximation [7] is adopted
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In the above fo denotes the equilibrium distribution
Ty 0) =1, (2:|'£Vo)"3/2 exp [— (v, — 2)*/2V3], 8)

the dot denoting here the scalar product, the colon the convolution operation of tensors, and the product of
vectors cc being the inner product.

In accordance with (8) A and Dy are represented by
?1:5'—71c+27, D, =D, + D, +Dr, )

where Ao, D, are transfer coefficients in a locally equilibrium medium; Ac, D¢ take into account the effects
of tangential stresses in a gas flow; and AT, D the thermo-bearing effect. When evaluating A and Dy by
using the formulas (5) and (6), it is necessary to expand in powers of & all the quantities appearing there,
and one ignores the terms of orders higher than e3/? and €2, respectively. The calculations are quite
straightforward, though cumbersome. They are omitted here, only the final results being given:
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In the above the coefficient of dynamic friction in the locally equilibrium gas was introduced
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and the diffusion coefficient Dy = er% in the velocity space. The expressions (10)-(11) are identical to
the familiar results of the theory of Brownian motion in a homogeneous gas [5]. However, since in our
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case ngand T depend on T, therefore v = y(?) and Dy = DV(?),
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These expressions describe the so-called stress-bearing effect for Brownian motion of particlgs in an
inhomogeneous gas flow which appears in the additional drift of a particle in the direction 7+s, as well as
in the anisotropic addition (12) to the diffusion coefficientgo.

Finally, the heat-bearing effect is taken into account by the expressions
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4. Thus, the Fokker—Planck equation for the distribution function of Brownian particles in an in-
homogeneous gas with (3), (4), (10)-(13) taken into accountis given by
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In the above
KeBrmrslyd L 2] p,=p 3z (15)
—EsruT4+—vL, r=y|I——= =|, D,=D,|I—— =|. :
K=bruligry L V[* 5p],*” [* 5P]

In contrast to Brownian motion in a local equilibrium medium, the tensor of dynamic friction I’ and the
diffusion coefficient Dy depend on the stress tensor in the gas. It is not difficult to find that the Langevin
stochastic equation can in this case be given in the form

dr )

R v (), (16)

() _
dt
where B - B = Dy, F(t) is the Gaussian random process with (Tt)) = 0 and (F(t)F(t')) = 215 (t—-t").

f(f)]—l'[f o1 v(f) B[f ©1-F ), (17)

The dependence of the coefficients in (17) on T makes the solving of (16) and (17) much more difficult
in the general case., The random process {T(t), vit)) appears as a two-componeant Markov diffusion pro-
cess. However, bearing in mind that during the relaxation time of the velocity of Brownian particles to
local equilibrium state in accordance with the state of the external medium, the distribution in the coordi-
nate space changes only slightly, one can consider Eq. (17) independently of (16) taking into account that the
dependence of the coefficients onTin (17) is only parametric. This corresponds to a change inf[?zt)],

I [_I"(t)], and ]iff(t)] being ignored during times of the order of duration of relaxation of particle velocity.
The solution of Eq. (17) can then be represented by
t

o () = Q(t)-[_z;(O)—— r-l.l?] + r-l.'k + Q(t)-'f Q1 (s)-g-z?(s) ds, (18)

where Q(t) = exp (—Lt), and the partxcle velocity is approx1mated by a Gaussian process. . It follows from
(18) that

-

(o)) =20 1<) —TKj+ Tk,

-

+

(0O ~2OF) =IDy+ Q) [<TO2(0)) —~ID,J-2 ) = d* ().

- -

Therefore, the probability density of the transfer i) is given by

= detd (f)
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729



For t — « one has (v(t)) -— I"1 . K 4¢) — r. DV and (19) yields the Maxwell velocity distribution of
Brownian particles in an 1nhomogeneous medium

k\')
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Since TrT = 0 it follows from (18) that the correlation time 7y = [(7(0)7(0) NIRE S V() Ydt = Te !
,0 —

=yt is identical with the duration of correlation for a particle velocity in a local equilibrium medium.

5. The distribution function for particles in the coordinate space is now introduced by

Pt A= [doF (T, ) 1)

The asymptotic behavior of P(t,_x_'.) for £ >» Ty (for approximations which are related by the expression (18)
to the approximation of velocity) can be analyzed using (14) with the aid of the Chapman—Enskog method or
the Kramers method. However, by using the stochastic interpretation of particle motion (with the same
approximations) one is able to analyze the behavior of P(f, T for t 2 <1y, as well, that is, as taking into
account the effect of inertia of Brownian particles in their motion in the coordinate space.

TFor 51mp1101ty, the case is considered in which V(0) is given by the d1str1but10n (20). In this case
by regardmg V(t) as a Gaussian random process which parametrically depends on r, one introduces the
function u(t T = Po(r r*(t)), T*(t) which 1s a solution of (16) and (18), Po(r) P(0,T). Then P(t, T)
= {u(t, 7). It follows from (16) that pu(t, T) is a solution of the equation

O '
Ly+L 22
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In the above
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Averaging the formal solution of (22) one obtains

P(t, N = (Texp U’ dt' (Lo + L)) > Py ()

0

or
t —
Pt =U @O Cexp|{ d'Li )] Py D), (25)
[
where )
U= expl g’ di'Ly (¢ )] Liy=UTLOUQ. (26)

Employing the definition of semiinvariants of correlation functions of a random process [8] one can repre-

sent (25) as
¢

P, 1) =U @ exp [[ G ()| P, (), @)
]
where
5 t
G(t) = —(F<exp H dr'Ly (t')} — 1>‘, o (28)
0

' (Li'= (t) ...L{ (t,) )¢ being semiinvariants of the correlation functions L{(t). The diffusion equation is ob-
tained by differentiating (27) with respect to time:

P (t, 1)
ot _
The adoption of the assumption on the coefficients in (17) results in considerable simplification of

caleulations of the explicit. form of the operator G(t). This assumption is essentially eqmvalent to the
operators U(t) and L(t) bemg commutative in the expressions for the correlation functions Ll (t) in (28).

— L+ UOGOULHIPE, . (29)
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Since w{t, r) is a Gaussian process, only the first term does not vanish of the expansion of the exponential
operator in (28), Having computed the correlation function w(t, T) and integrated with respect to time, the
following expression is found:

UeGnU= = —;— v —2®O1T (y-I-Dr) - v-Dr (t)-v, (30)
where
Dr (#) =Drll —Q@®), Dp=I"D,. (31)

The first term in (30) represents additional contribution to the pulling-down determined by the inhomogen-
eity properties of the surrounding medium, the second term describing the diffusion of Brownian particles
in the coordinate space. Using (30) and (23) one can represent Eq. (29) as

LD v |rR- 5 =201 (LD | P 7 =7 De 9P €. 7 82
Unlike the asymptotic equation of Kramers—Smoluchowski, Eq. (32) describes the diffusion process
also for t € 1. In particular, the quantity which describes the propagation rate of perturbations, (d/dt)
-YTr{[[t + Q(t)-1]- I " - Dy}, obtained from (32) remains finite for t — 0, since it is equal to the average
velocity of thermal motion of the particles. For t < ry in (32) the inertial effects of the particle motion
are essential; they are determined by the time dependence of the coefficient Dr(t) and are related to the
effect of velocity fluctuations of a Brownian particle on its motion in the coordinate space. Fort > 1y
these effects become inessential, and by ignoring the exponentially damped terms in the expressions for
the coefficients in (32) one obtains an asymptotic equation for Brownian diffusion in an inhomogeneous gas

aP (i, 1 T A
a(t 4y VP, =v-Dz - VP (t, 1), (33)

where

-
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The expressions for V and DR are now analyzed in their linear approximation in the thermo- and
stress-bearing effects. Expanding (31) and (34) into power series in I_/p and retaining only the linear
terms one obtains

DR:DR[I__I. _f:], V= yiE. ]_L_f» +—q—;-{-V'DR+Z, (35)
- - 5 p - 5 p 5p - :
which are identical with the results in [4] where DR = v 2Dy, is the Einstein diffusion coefficient,

6. To illustrate the obtained results a simple example is considered of Brownian diffusion of par-
ticles in a gas Poiseuille flow; the effect is studied of tangential stresses between parallel plates y = +h/2
on the stationary distribution of particles. We only retain the linear in 7 expressions (35). By adopting
the 0X axis in the u direction one hag uy = (3/2)ﬁx(1—4y2/h2), Uy =ug =0, Txy = Tyx = —3uﬁx4y/h2, Txx
=Tyy = Tzz = Txz = Tyz = 0. Let Ex = —E =const, E; =E; = 0. Then it fpllows from (35) that

3 Dp 4 -
DRxx = DRyy = DR » Dny == DRyx = - ‘—R‘ — WY,
5 p A
Vem —vE i (14 ) - 2 28 i, (%)
2 h? 5 p n :
' 3 yE 4 -
V,=— — .
Ty T, B nuy
The stationary diffusion equation then becomes
d 4P (y
—~byP(y) =D ,
i YP (y) = Dr — " v 37

where b = (3/ 5)7"E(4/h2)(uﬁx/pDR). The solution of (37) for the condition dP/dyl.}/, = 0 can be repre-
sented as .
- 2%0 -1 2 9. .
Pl =n —= 0™ (%, 0)exp[#* — . (38)
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In the above

e

2
K= VT 9= VBB 0t 0) = e [
0

n is the mean particle density in the passage section. If in (38) the effect is ignored of tangential stresses
in flow on the particle distribution (b — 0) then the obvious result P = n is obtained. Thus, the stress-
bearing effect on Brownian diffusion results in an inhomogeneous distribution of particles in the passage
section with a higher concentration nearer the walls. It is noted that in the case of the directions of the
external force and of gas velocity being the same (Ib < 01), (38) describes an inhomogeneous distribution
with lowered particle concentration near the walls. Since (8) is valid if Imax7/pl < 1 and ®2 ~ Ehm/kT
-lmax 7/pl, therefore the inequality n} < 1 depends on Ehm/(kT) and it is virtually always valid. There-
fore, the inhomogeneity of the stationary particle distribution in the gas flow is small. For b <1 the ex-

pression (38) can be simplified:
_ 2
p=ifi=3 (5 —7)) %)

A more essential effect of stress-bearing is on the integral flow jx. The latter is determined by the
inhomogeneous distribution (39) on the one hand, and on the other hand by the supplementary drift in the
opposite direction to the gas flow which is described by the last term of Vx in (36). By using (36) and (39)
one obtains ' T

h/2
. ‘ - [— - 1-4f1, & Dg dp
= == nh —y e —y | —b— + 3—— | L. (40
Ix S‘ dyPVx n [ux ¥ 5 ux( 3 4 N ph2 ):l \ )
—h/2
In (40) the stress-bearing effect determines a nonlinear dependence of jx on the average gas velocity Ux.
It is noted that the validity of (40) is bounded by the values of uy which can be found from the conditions

b<1, Imaxt/pl <1,

NOTATION
Vand% are the particle and gas molecule velocity;
o is the dissipation cross section;
a is the average gas flow rate;
T is the gas temperature;
I is the stress tensor;
q is the heat flux;
V3 = kT/my;
I is the identity tensor;
Ty is the correlation time of particle velocity;
7 is the viscosity;
P is the hydrostatic pressure.
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